
J .  Fluid Me& (1983), wol. 132, p p .  34S373 
Printed in Great  Britain 

349 

Tests of subgrid models in the near-wall region 
using represented velocity fields 
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The 2.5-dimensional model of the turbulent field near a wall, proposed by Hatzia- 
vramidis & Hanratty (1979) and modified by Chapman & Kuhn (1981), has been used 
to test the subgrid models of Schumann (1973, 1975) and Moin & Kim (1982). The 
results are disquieting, both trends and orders of magnitude sometimes being 
seriously in error. It also appears that the contribution of the subgrid energy to the 
pseudopressure calculated in large-eddy simulations can be large, although this 
contribution is usually neglected. On the positive side, Leonard’s model for the 
Leonard stress is extremely good, and Schumann’s synthetic boundary condition is 
also found to be reliable. 

These results must be taken with a grain of salt, since the tests reported in $5  show 
that the 2.5-dimensional model cannot reproduce important characteristics of the 
turbulence in the neighbourhood of y+ = 40. 

1. Introduction 
Many attempts have been made to represent the turbulent velocity field in the 

neighbourhood of a solid wall using simplified analytical or numerical procedures. The 
paper of Schubert & Corcos (1967) is typical of earlier attempts, which, though 
interesting, produced fields which did not agree a t  all closely with experiment. 

A substantial step forward was taken by Hatziavramidis & Hanratty (1979), who 
combined an outer boundary condition representative of the spanwise streaks with 
the assumption that the streamwise derivatives are negligibly small. This assumption, 
which is inferred from the experimental observation that the streaks are much 
extended in the streamwise direction, reduces the dimensionality of the problem and 
makes it possible to generate sample velocity fields without excessive computation. 
The fields generated in this way are periodic rather than random (because the outer 
boundary condition is periodic) but, as Hatziavramidis & Hanratty showed, this is 
no obstacle to using them as representations of true turbulence. 

Chapman & Kuhn (1981) have improved the outer boundary condition by careful 
analysis of the experimental data, and we have used both types of boundary 
condition. 

Our objective has been to test the subgrid models proposed by Schumann (1973, 
1975) and by Moin & Kim (1982) for use in large-eddy simulations of turbulent flows 
in channels and other simple geometries. Since we have a detailed representation of 
the field, we can compute the ‘actual’ subgrid stresses and compare these ‘actual’ 
values with those generated by the models. 

t Permanent address: Department of Applied Physics, Nagoya University, Nagoya, Japan. 
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This approach to the testing of subgrid models was pioneered for homogeneous 
fields by Clark, Ferziger & Reynolds (1979). They were able to do a full simulation 
on a fine mesh (643) and then to test the models on coarser meshes. Wehave not been 
able to do this, since a full simulation of a turbulent channel flow is quite out of reach 
at present, even for low Reynolds numbers. We have therefore had to use the 
2.5-dimensional representation of Hatziavramidis & Hanratty and of Chapman & 
Kuhn, and our work cannot have the authority and accuracy of that of Clark et al. 

We have not found it easy to reproduce the results of Hatziavramidis & Hanratty 
and of Chapman & Kuhn, and the paper begins with an account of the problems we 
have encountered. We have also used the represented fields to examine the behaviour 
of k and E near the wall. 

2. 2.5-dimensional model simulation of viscous-sublayer turbulence 
Under the assumption that the velocity derivatives in the streamwise (x) direction 

are negligible, the Navier-Stokes and continuity equations for an incompressible fluid 
simplify to 

av av av l a p  
at ay az pay 

aw aw aw l a p  
- +v- +w- = - -- + vV2w+F3, 
at ay az paZ 

- + - = 0 ,  

- + v - + w - = - - - + v V2v + F2, 

av aw 
ay a Z  

(2.la) 

(2.1 b )  

(2.1 c )  

(2.ld) 

where V2 = (a2/ay2+a2/az2), and p,  p ,  v and F are the fluid density, pressure, 
kinematic viscosity and a body-force respectively. The vector field u = (u, v, w )  
depends on only two space coordinates y and z ,  but still has three components. Such 
a field is sometimes called two-and-a-half-dimensional. 

Having only two independent variables, equation (2.1) can be solved either in terms 
of the primitive variables ( u , p )  or by introducing the stream function defined by 

and the vorticity 

Equations (2.1 b-d) then yield 

To simulate the viscous sublayer, (2.la-d) or (2.la), (2.2-2.4) are to be solved with 
appropriate boundary conditions and a suitable choice of F. This approach was 
initiated by Hatziavramidis & Hanratty (1979), and we use both their model and the 
variant due to Chapman & Kuhn (1980). Following Hatziavramidis & Hanratty, we 
have used a stream function-vorticity method, whereas Chapman & Kuhn solved the 
primitive (u, p)-equations. 
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2.1. HH model 
Hatziavramidis & Hanratty (HH) proposed the following boundary conditions : 

@ = g = 0 ( z  = O,&h), (2.5~) 

a@ - on the wall (y = 0) ,  @=rO 
u = uo, 

a@ 2x2 (Y = Yo), 
aY h 
- = -wL sin - cos ot, - - 

with F = 0 and the initial condition at  t = O  

2772 sinh (2ny/h) 
@ =-sin(-) 277 h cosh (27ry,/A) ’ g = o ,  

(2 .5b)  

( 2 . 5 ~ )  

(2.6~) 

u = UL(Y), (2.63) 

where UL(y) is the velocity distribution measured by Laufer (1954). Following HH, 
the parameters in (2.5), (2.6) are chosen here as 

where u, = (7,/p)t, and 7, is the mean stress on the wall. HH also simulated flows 
with values of A + ,  y;, T& different from (2.7). The resulting flows do not seem very 
different from those produced by (2.7), and we have not thought it worthwhile to 
make this variation. 

Finite-difference methods were used to find approximate solutions of (2.1 a), 
(2.2)-(2.4). The field 0 < y+ < yi, 0 < z+ < A+ was divided uniformly with grid 
points (ylf, z,’), i = 1, .. ., 33,j = 1, ..., 64, where i = 1 corresponds to y+ = 0, i.e. the 
wall. By imposing fully periodic boundary conditions, the solution is made equivalent 
to that of HH, who solved with zero boundary conditions in the half-domain 
0 < z+ < @+. By using the full domain, our solution method for HH is made fully 
compatible with that for CK. Since we solved the equations on the ICL DAP, which 
has 6q2 processors, the penalty of using 64 mesh points rather than 32 in the z-direction 
is small. 

The solution was advanced in time by applying the Adams-Bashforth scheme to 
the nonlinear term and the Crank-Nicholson scheme to the viscous term. Because 
we are interested only in the state periodic in time where the initial condition is not 
important, the initial condition (2.6b) for u was approximated by a simpler log-profile 
distribution. The computation was carried out on the ICL DAP (Distributed Array 
Processor) installed on the University of London 2980 at QMC. The root-mean-square 
(r.m.s.) values of the velocity field (v, w) were compared with those obtained from 
another code written by Dr B. A. Splawski of the QMC Turbulence Unit which uses 
the primitive variables (v, w) defined on a staggered mesh. No significant difference 
was observed. 
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FIGURE 1. Mean-velocity profile U :  -, HH model: ----, CK model; 
o o 0,  experiment by Laufer (1965). 

2.2. CKrnodel 
Chapman & Kuhn (CK) took into account the role of the large eddies and proposed 
another set of the boundary conditions consisting of two components representing 
small and large eddies. We also tried this model. In the light of our experience, we 
now think that the difference between the HH model and the CK model is not crucial 
for the analysis discussed in the following sections. The detail of the CK-boundary 
condition is given in appendix A. 

2.3. Velocity Jield 
The mean-velocity profile (u )  and the root-mean-square (r.m.s.) of ii = u- (u )  
obtained by these HH and CK models are plotted in figures 1-3. We also plot for 
comparison some experimental data measured by Laufer (1954) for Re= 50000. All 
figures are presented in + units, non-dimensionalized with u,,v and p. The ‘mean 
average ’ ( ) is computed as follows : 

where 

(2.9) 

and ( ) t  denotes the time average over one cycle. We expect that the flow field will 
approach a time-periodic state after a sufficiently large time, although it is not 
immediately obvious that the solution of a nonlinear equation will have perfect 
periodicity. In computing the HH model we took the number N of the time steps 
per cycle to be 400. The field was observed to be almost periodic in time after a few 
cycles, and the time average was taken during the fifth cycle. With the CK model 
the period is much longer than with HH, and 3200 time steps takes us to the end 
of the second cycle only. Hence the average was taken during the second cycle. 
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FIGURE 2. R.m.s. values of I%+, 5+ and G+ by the HH model: -, 4+; ---, @; ----- , G+. 
Experiment by Laufer: 000 ,  I%+; + + +, 5; n o ~ ~ ,  G+. 
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FIGURE 3. R.m.s. values of 4+, 3, G+ by the CK model: -, I%+; --- , ,  C + .  G+. 
Experiment by Laufer; O O O , ~ + ;  + + +, @; 000,G+. 
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Results from the HH model shown in figure 1 and 2 are a little different from those 
reported in their paper. We think that this difference is due to an incorrect scheme 
used in their time-advancement procedure for the stream and vorticity functions : 
details are given in appendix B. The agreement between the mean-velocity profile 
( u )  given by the HH model and that obtained by experiments (Laufer 1954) is 
unhappily not as good as they thought. 

The slope d(u+)/dy+ of the mean velocity should be unity by definition, but the 
slopes given by the model calculations me not exactly unity, as may be seen in figure 
1 .  This suggests that the boundary conditions of the models are not self-consistent. 
For the HH model, this slope can be easily made unity by multiplying the boundary 
value U i  (see (2.7)) by a suitable factor (the inverse of the slope at y+ = 0) and no 
fresh computing is needed. For CK the correction is a little more complex : again the 
value (u) on y = yo would then become different from the experimental value. Such 
corrections would not have any fundamental effect on the discussion in the following 
sections and we do not make them. 

3. Subgrid models for the near-wall region 
In large-eddy simulation (LES) a fieldf is decomposed into a grid scale (GS) f and 

a subgrid scale (SGS) f’ : 
f =f+f’ 

(see e.g. Leonard 1973 ; Ferziger 1981). Since the pioneering work of Deardorff (1970), 
there have been two substantial studies of channel flow by this method;by Schumann 
(1973, 1975) and Moin & Kim (1982). 

3.1. Schumann’s SGS model 

We shall explain this in some detail, since we need to reproduce his procedure 
precisely. Schumann used the volume-balance procedure to define the resolved part 

where hi is the computational mesh size, and the volume over which the average is 
taken is fixed in space, so that f is defined only on discrete points (usually taken to 
be the centres of mesh volumes). Applying the filtering operation (3.2)to the 
Navier-Stokes equations (in this section the body force term is omitted) yields 

where u = (u, v, w) 3 (ul, u2, u3), x = (z, y, z)  = (zl, z2, z3), and 3f is the mean value 
off averaged over the surface area jF of a grid volume, the normal to which is in 
the j t h  direction, e.g. 

(3.4) 

are called SGS Reynolds stress and must be modelled. 
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Smagorinski (1963) suggested that the subgrid-scale stress 
__ - 

713 = u; u; - 5 u; ui 

should be related to the GS velocity field by an eddy-viscosity model 

TZj = - 2Vn SZ*, 
where 

(3.9) 

(3.10) 

is the GS strain tensor. (This definition does not imply anyparticular form of filter.) 
He also proposed 

V, = C2h2 2xS,jSZj , (3.11) 

where h is the mesh size (he assumed h, = h, = h, = h )  and C is a non-dimensional 
constant subsequently found empirically to be about 0.18. Lilly (1966,1967) justified 
the model in terms of turbulence theory and evaluated the constant C. He showed 
that, since the subgrid eddy viscosity in (3.11) is isotropic, this equation must imply 
isotropy of the subgrid scales. (See Leslie & Quarini (1979) for a full discussion.) 

Schumann realized that near the wall there would be significant anisotropy of the 
subgrid scales (his ‘inhomogeneous part’), and proposed a model consisting of two 
parts, an isotropic part which we call I and an anisotropic part which we call A ,  thus 

Lj >” 

where 
(3.12 a) 

(3.12 b)  

A ,  = - 2 ‘jp*(Sij), 

S.. a3 = l(S 2 z i,-.+S j Za $1; 
(3 .12~)  

(3.13) 

this being the appropriate implementation of Lilly ’s idea. Although Schumann 
defined ( ) as an ensemble average, we regard it as an average over a plane parallel 
to the wall, which is more appropriate in real LES. The eddy viscosity is given 

“p = C2(IFJ’E)ttjC, (3.14) 

j E ’  = gc ( ui-4Ziy, (3.15) 

C, is a constant ( x  0.094) and W’ another constant. For turbulence whose mean flow 
is in the x1 direction and which depends only on x2, the coordinate normal to the wall, 
the eddy viscosity @p* is needed (and is indeed defined) for i = 1, j = 2 only. 
Schumann modelled it as 

12 Y * =  ( 2 L)21f32(uI)11 (3.16) 

(”), = min (Ci ,P,  L2),  (3.17) 

L = 0 . 4 ~ ~ ~  (3.18) 

by 

with 
I -  

i 

where C,, is a constant ( x 0.01). 
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3.2. Moin & Kim's XGS model 
In their LES of a turbulent plane channel flow, Moin & Kim (1982) defined f as 

f ( x )  = n G,(x, x ' ) f (x ' )  d3x', (3.19) 

where Ge is the filter function in the i-direction, and the integral is extended over the 
whole field (Leonard 1973). In  the plane parallel to the wall, in which the flow is 
statistically homogeneous, they used the Gaussian filter function 

P i  

(3.20) 

with A,  = 2h,. In the direction normal to the wall, x 2 ,  they used a filter with a variable 
width A,(x2)  : 

A + ( x ~ ) + A - ( x ~ )  ( x ~ - A - ( x ~ )  < X; < x ~ + A + ( x ~ ) ) ,  
(xi > x2+  A+(x,)  and xi < x 2 - A - ( x 2 ) ) ,  

(3.21) with 

where xY is the location of the j th  computational grid point in the vertical direction. 
The functions A +  and A -  are thus a series of constant segments joined by jumps. 

Applying the filtering operation (3.19) to the Navier-Stokes equations yields 

(3.23) 

where 

with 

Moin & Kim's model for rrj is 

(3.25) 

(3.26) 

(3.27a) 

(3.27 b )  

(3.27 c) 

C = C, = 0.065, 

A = ( A l  A 2  A 3 ) f ,  

(3.30) 

(3.31) 
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D = 1-exp(- Y ) ,  (3.32) 

D* = 1-exp(- Y 2 ) ,  (3.33) 

where Y = yw u,/25u, with yw being the distance to the nearest wall ; and Stj is defined 
by (3.13), while the meaning of -is given by (3.19). 

This model is similar to that of Schumann. It is, however, intended to be used in 
the viscous and transition layers, while Schumann’s model applies to the inviscid 
(logarithmic) region only. Moin & Kim have therefore introduced damping factors ; 
of Van Driest type to account for the behaviour near the wall. 

3.3. Leonard stress 

The so-called Leonard stress - 
A, = qaj-a.” a 3  (3.34) 

introduced by Leonard (1974) is zero for Schumann’s volume balance procedure, but 
is not equal to zero for Moin & Kim’s filtering procedure. With respect to the Gaussian 
filter in the horizontal directions, Moin & Kim calculated the double bar term 
explicitly, but with respect to the top-hat filter in the x2 direction our understanding 
is that they incorporated A ,  in ri5, i.e. the equation (3.27) is to be understood as a 
model for rij  with Q defined by 

H r  _ _ - _ _ _  
Qu = ~ r ~ j - t ~ t a j + ( t i g ~ j -  uguj) 

(3.35) - H= = uiuj- uiuj, 

instead of Q defined by (3.26)’ where H- denotes the filtering in the horizontal 
direction only. Hereinafter we use (3.35) instead of (3.26) as the definition of Q .  If 
the volume balance procedure is used in the x2 direction, then (3.35) is equivalent 
to (3.26).7 

The quantity (which we call here also Leonard stress) 

(3.36) 

is not equal to zero in Moin & Kim’s procedure. Following the idea of Leonard i t  can 
be shown that 

H--- - Lt3 = uiuj ugu,, 

(3.37) 

for the filter defined by (3.19)-(3.22). Moin & Kim showed that L, can be quite 
significant. 

3.4. Schumann’s pseudoboundary condition 

To solve the filtered equation (3.3) or (3.23) we need the boundary condition for 

a2a, aat 
3x2 8x2 

u- in (3.3) or u- in (3.23). (3.38) 

Moin & Kim used natural boundary conditions with a fine mesh near the wall. Then 
u aa,/ax2 can be represented in the usual way. This approach is obviously satisfactory 
in principle. In practice it suffers from a shortage of mesh points. It is not certain 
that the finest mesh now available is sufficient even at  low Reynolds number. 

t We are here reporting what we understand Moin & Kim to have done. We note that the QMC 
group has reservations about the whole concept of filtering (Antonopoulos-Domis 1981). 
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Realizing that the mesh is not sufficiently fine in his LES, Schumann introduced an 
assumption 

(3.39) 

where the subscript 1 denotes that the quantity is to be evaluated at the grid adjacent 
to the wall. The brackets ( ) is here regarded as the mean average over time and 
the plane parallel to the wall. 

4. Testing of models in LES 
4.1. Test procedure 

We will now use fields generated from the 2.5-dimensional model fields set out in $2 
to analyse the various models for the subgrid stress in the near-wall region described 
in $3. 

The filtered quantities t ~ ~ ,  u; u; etc. used in the definition of the subgrid stress can 
be computed from the 2.5-dimensional model fields available on the 33 x 64 grid points 
distributed uniformly over the (y+, z+)-plane. We can also compute these stresses 
according to the SGS models set out in $3, using filtered quantities obtained from 
the 2.5-dimensional realizations. In  this section, ‘experimental’ or ‘exp ’ refers to 
numerical experimental values computed from the HH- or CK-model fields,as 
described in $ 2. 

For the comparison we define a coarse grid of points YI (or x , ~ ) ,  I = 1,2,3, . . ., in 
the y-direction in accordance with Moin & Kim’s scheme, by 

__ 

y;=-- ’ - (A tanh {& tanh-l (a) }  + 1 
y/u7 a 

with EI  = -1+2(I- 1)/62, a = 0.98346. (In this paper we put Re, = 640.25 and 
Y: = 0, Y l  x 1.78, . . . , Ytl z 38.18, Y:, x 45.99.)The mesh width h, ofthe LES grid in 
the 3-direction is independent of the y-coordinate, as it was in the Moin-Kim 
simulation. Because our ‘experimental’ fields are independent of x, the filtering 
operation in the x-direction is perforce omitted. 

In this work, the trapezoidal rule is used to evaluate the integrals in the filtering 
procedure, other than the z3 integrals in (3.19): these are evaluated in wavenumber 
space. When a value of ”f(y) (see (3.4)) is needed at a y-value away from the points 
of the representational grid, it  is computed by first calculating the velocity at the 
appropriate y-value by interpolation and then performing the filtering operation. The 
z-average (f) (y) is obtained by first computing f on (y, zj), j = 1, .. ., 64, and then 
taking the z-average in accordance with (2.9). The mean average ( ) is computed in 
the same way as (2.8). 

4.2. Modelling of the subgrid Reynolds stress : deJinition and procedures 
Let us first consider 712,  the most important component of 7t5 in determining the 
mean-velocity profile ( u , ) .  We will now compare ‘experimental ’ values of the subgrid 
stress 712 with those given by Schumann’s or Moin & Kim’s model, using ‘ experimental ’ 
values of the filtered velocities to evaluate the model stresses. The quantities 7,,, I , ,  
and A,, (see (3.12) and (3.27)) so evaluated are here called 7m,,d, Imod and Amod 
respectively. The reader is asked to note that ‘mod’ now refers to quantities 
computed from the ‘experimental’ velocity field according to the subgrid model. 
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Because the HH- and CK-model field have no z(zl) dependence, we modify 2F in 

2P = (h,),,  A = (d,d3)f, (4.2u, b) 

(3.14), (3.17) and A in (3.31) from h,h,, A = (Al,4,A3)~ to 
- 

and put lZC = 1.  (Instead of (4.2b) we could have used 

A = {(A,)’+ (A3)2)4 or dpl = {(d2)-2+ ( ~ , ) - 2 ) t . )  

Since the mesh width in the y-direction is not distributed uniformly, the question 
of how to approximate the y-derivatives appearing in LES modelling is not trivial. 
The derivatives in (3.12) were computed as 

where 

and YI is defined by (4.1). The derivatives in(3.27) were computed as 

(4.7) 

The ‘experimental’ fields are known only for 0 < y+ < 45 (HH model) or 
0 < y+ < 40 (CK model), and the formulae can be applied a t  interior points only. 
Moreover the values at the last one or two interior points are unreliable. Derivatives 
at such points were not computed and do not appear on the figures. This accounts 
for the truncated appearance of some diagrams. 

The subgrid stress T,, can be decomposed into the z-average (712)2 and the 
deviation 712 - (712)z from the z-average. We call the ‘experimental ’ values of 712, 
( T ~ , ) ~  and 712- (712)2 7exp, Aexp and Iexp respectively, so that 

(4.8) 

(7exp)z Aexp, ~exp-<7exp)z Iexp. (4.9u, b)  

For both the Schumann and the Moin & Kim models, Amod = (Amod)z, and we 
therefore have 

(7mod)z = Amod + (Imod)z, ( 4 . 1 0 ~ )  

7m0d- (7m0d)z = Imod- (Imod)r, (4.10 b )  

because the eddy viscosities 12,u*, v$ for the anisotropic part are independent of z. 
(Note that the brackets ( ) in (3.12) denote the 2-average which is our approximation 
to an average over the (2, 2)-plane.) If the z-dependence of the eddy viscosities l2p, 
vT for the isotropic part is negligible, then (Imod)z = 0, and (4.10) exactly corresponds 
to (4.9). In this sense, Amod and Imod may be roughly regarded as the models for Aexp 
and Iexp respectively. 

7exp = Aexp + Iexp, 
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4.3. Modelling of the subgrid Reynolds stress: results 

Now let us compare the averages of reXp and 7mod. From ( 4 . 9 ~ )  and (4.10a), we have 

(rexp) = (Aexp), (rmod) = (Amod)+(Imod)* (4.11) 

In figure 4 are plotted the values of (A,,,), (Amod) and (Imod) computed from 
HH-model fields for Schumann’s definition of subgrid stress (3.6) and his model (3.12). 
The filter width h, in the z-direction is chosen as h i  = 8(Az+) or h i  = 16(Az+), where 
Az+ = A+/64 = 100/64 is the mesh width in the z-direction of the fine grid system. 
In figure 5 are plotted the values for Moin & Kim’s definition of subgrid stress (3.24) 
and for their model (3.27). It is found that the value of l(&,,d)l is very much smaller 
than that of I(AmOd)l and therefore (rm,d) x (Amod); this is in accordance with our 
expectation. In Schumann’s modelling the value of ~(Imoa)~ for h i  = 8(Azc) is smaller 
than that for hi = l6(A2+) and is not included in figure 4. In Moin & Kim’s model, 
values of I(Imod)l for both h i  = 8(Az+) and 16(Az+) are too small to be plotted in 
figure 5. 

In Schumann’s model (3.12), the magnitude of (&,,a) is proportional to 

( M U , ) )  2. (4.12) 

Very close to the wall (y+ 5 lo), the slope a ( u ) / a y  is very high (cf. figure 1 ) .  Hence 
it is not surprising that I(AmOd)l is very high near y+ x 5 as seen in figure 4. The 
agreement between Schumann’s (Amod) and (Aexp) is very poor. Schumann’s SGS 
model was not intended for use in the near-wall region, and in a sense it is unfair 
to apply it there: none the less, the results seem interesting enough to record. The 
SGS model should be valid in the logarithmic region, and the disagreement there is 
disquieting. A t  the moment. we cannot say whether the error is in the model or is 
due to the deviation of the 2.5-dimensional velocity fields from the actual behaviour 
of near-wall turbulence. 
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Such a disagreement or ill-behaviour of (Amod) is significantly modified in Moin 
& Kim’s model (3.27) by the introduction of the factor D* defined by (3.33). However, 
the agreement between (Amod) and (A,,,) is still not satisfactory. From (3.27) and 
(3.29), (Amod) is to be proportional to A: = (2h3),; figure 5 suggests that the 
dependence of (Aexp) is not nearly as strong as this. It may be interesting to note 
that the order of magnitude of (Amod) is similar to  that of (Aexp) especially for 
h, = 8A3, i.e. h i  = 12.5 in figure 5. This justifies to some extent Moin & Kim’s choice 
of the value 0.065 for C in (3.30). (In their LES, they used h$ = 15.7 and 20.9.) 
However, if the 2.5-dimensional velocity field is anywhere near correct, the SGS model 
is in need of substantial modification. 

Next we compare the deviations 7,,, - (7,,p)r and 7mod - (Tmod)Z, i.e. I,,, and 
ImOd = Im,,&-(Imod)z. It is clear from (4.9b) and (4.10b) that  (leXp) = <rmo,> = 0. 
The r.m.s. values of Iexp and Imod are plotted for Schumann’s definitions and SGS 
model in figure 6 and for Moin & Kim’s definitions and SGS model in figure 7. Again 
the agreement between the experimental values and the values given by the models 
is not very good in both cases. The Schumann SGS model is of the right order of 
magnitude, but it peaks too near the wall. This is not surprising, since it does not 
include a wall correction. The r.m.s. values of rmod in Moin & Kim’s model is wrong 
by three orders of magnitude. 

We have also computed the correlation C, between Iexp and Imod : 

(4.13) 

The value of C, is not affected by the choices of the values of C,, 12C, C, or ,F, D 
used in the models. In  figure 8 are plotted the values of C, obtained from the H H  
model for h,/Az = 8 and 16. In  Schumann’s model, CI lies between 0.5 and 0.7. In  
view of the experience of Clark et al. (1979) this is modestly encouraging. In  Moin 
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& Kim’s model the value of C, is disappointingly low : in some regions i t  is actually 
negative. 

Similar comparisons between (7mod) and (7exp) and between 7m0d - (7mOd)z and 
reXp - (rexp) have also been made with 2.5-dimensional velocity fields generated from 
the CK model. The results do not show significant qualitative differences from those 
given by the HH model, except for the value of the correlation coefficient C, for 
Schumann’s model which is shown in figure 9; this value is not as high in the CK 
model as in the HH model. Otherwise, we present here (in figure 10) only the result 
of the comparison between (A,,,), (Amod) and (Imod) for the Schumann definition 
and model, which corresponds to figure 4 for the HH model. 

4.4. Pseudopressure and subgrid energy 

The pressure computed in an LES is the P defined by (3.25) for Moin & Kim’s scheme 
and by a similar one (not given here) for Schumann’s scheme. It is therefore a 
pseudo-pressure, and it magnitude is affected by a contribution from the subgrid 
velocity energy (the &-term in (3.25) for Moin & Kim’s scheme). We have used our 
modelling technique to investigate the importance of this contribution.In figures 11 
and 12 are compared the average ( p )  of the ‘true’ pressure and the contribution 
R = &kk from the subgrid velocity energy as given by the HH model, where Qkk 

is defined by (3.35) for Moin k Kim’s scheme and &m 2 W k  - u k  uk for 
Schumann’s scheme. As can be seen in the figures, the contribution R is not negligibly 
small when compared to ( p ) ,  especially for smaller y+ and/or larger h,, i.e. h, = 16&. 
The results obtained for the CK model are qualitatively similar. 

2- 2- 
k 
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FIGURE 10. Same as in figure 4, but by the CK model. 
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4.5. The Leonard stress 
We denote the experimental value of L,, defined by (3.36) as Lexp. Because our 
'experimental ' velocity field is independent of q, the Leonard model (3.27) yields 

(4.14) 

where the term O(A2)  in (3.37) is omitted. We denote the value of L,, given by 
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FIGURE 11.  The averages of the pressure p+ and the contribution R from the subgrid energy to 
the pseudopressure. HH model. Schumann’s LES. --, ( R + ) ;  ---, ( - p ’ ) .  

the model (4.14) as Lmod. It is clear that (%)z = <UU)z  and therefore 
(Lexp)z = (Lexp) = 0, and that, because of the periodicity in the z-direction of our 
‘experimental’ field, (Lmod) = 0 also. 

The r.m.s. value of Lmod was found to be very close to that of Lexp with both the 
HH model and the CK model. The r.m.s. values obtained from the HH model are 
plotted in figure 13 for h,/Az = 8 and 16. The correlation between Lexp and Lmod is 
found to be also very satisfactory; it is found to be larger than 0.99 in both CK and 
HH models for y = YI ( I  = 2, ..., 11) .  Since Leonard’s model for the Leonard stress 
seems reasonable, the model Lmod was expected to represent Lexp rather well, but 
the agreement is much better than we had expected. 

4.6. Schumann’s pseudoboundary condition 

So far as the mean value is concerned, the assumption (3.39) is clearly consistent, 

(4.15) 
i.e. 

where ?god is the model of 7, represented by the right-hand-side term of (3.39). We 
decompose 7, and 7god into mean and fluctuating parts as 

(7,) = <7fOd), 

7, = (7,)+7;, = (7,) ( l + r ) ,  (4.16) 
7mod = 

w ( 7 F 0 d > + F d  = (7,) ( l  +rmod), j 
where (4.15) has been used. The fluctuating part 7 y d  depends on the size of the coarse 
grid adjacent to the wall and we need to define this size in order to compare 7, and 
?god. We have taken the coarse grid in the y-direction next to the wall (y+ = 0) to 
be as large as y+ = Ay+ x 22 ( x 30.9 in HH model, x 27.5 in CK model). 

I n  table 1 are shown the values of the correlation C, between 7, and 7rod, the 
correlation C, between rand  rmod, and the r.m.s. values of r and rmod. As can be seen, 
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HH model CK model 

16 8 16 

c7 0.98 0.98 0.94 0.94 

r.m.8. r 0.36 0.36 0.70 0.70 
r.m.8. rmod 0.21 0.19 0.36 0.35 

c, 0.82 0.82 0.88 0.89 

TABLE 1 

the values of both C, and C, are quite high. This suggests that the stress 7, on the 
wall is well correlated with the flux lal averaged over the grid adjacent to the wall, 
and is therefore well represented by the model (3.39). 

5. Testing of k, E model 

closures. 
The model fields generated in $2 could be used for testing the standard one-point 

Let us write 

u = u+ii, u = ( u ) ,  

k = +(iiii). I 
Then it is a standard result that 

where 

4 

and the summation convention is used for repeated indices in this section only. 
Equations may also be formulated for the (4,Cj) appearing in (5.2). Various 
approximation methods have been developed for solving these equations : see, for 
example, Launder & Spalding (1972). 

The turbulent energy k and the energy dissipation B play a crucial role in the most 
popular of these approximations, and it is interesting to see their behaviour in the 
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FIGURE 14. Turbulent energy k+: -, HH model; ---. CK model. 

2.5-dimensional models. The dependences of k and E on y in these models are shown 
in figures 14 and 15. We also plbt 

a d  
(5.5) 

as a possible representation of the turbulent (high-wavenumber) dissipation. There 
are computational advantages in using E‘ instead of E ,  because E’ is zero on the wall. 
Jones & Launder (1972,1973) made the transformation (5.5) for purely computational 
reasons, but it could also be interpreted as the high-wavenumber part of the 
dissipation (Leslie, unpublished). As is seen in these figures €mod and kmod have their 
peaks near y+ z 10, where as is well known the turbulence production is most intense. 
The rather odd behaviour near the outer edge is presumably due to the failure of the 
2.5-dimensional model in this region. We note that E’ is indeed small near the wall, 
so that the Jones-Launder model achieves its objective. 

We have used these fields to compute the length-scales 

d d 
E €‘ ’ 

1 = 0.164--, 1’ = 0.164- (5.6) 

both of which should be equal to 0.4y+ in the logarithmic region. The results, shown 
in figure 16, are disappointing, 1 failing to show the required linear increase with y 
in the outer regions of the simulation. We had proposed to use the 2.5-dimensional 
fields to test models for the various terms in the k- and €-equations, but i t  now seems 
to us that the process for generating the ‘experimental’ velocity fields must be 
improved if this exercise is to have any practical value. 

After we have obtained these results, Professor Hanratty remarked to us that his 
model was not intended for use outside the viscous wall region. 
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FIQURE 15. Turbulent-energy dissipation E +  and d+ : ~ , HH model; ---, CK model. 
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Y +  

FIQURE 16. The lengthscales Z+ and Z’+ defined by (5.6) : ---, HH model; ---, CK model. 
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6. Discussion and conclusions 
The 2.5-dimensional model introduced by H H  and improved by CK is, so far as 

we know, the first procedure for generating reasonably realistic near-wall velocity 
fields : we have used it to test the subgrid models proposed by Schumann and by Moin 
& Kim. The results are as follows. 

(i) The models for ( A )  (roughly the 1.111.5. subgrid Reynolds stress) are bad: both 
show large peaks near the wall which are quite absent from the ‘true ’ or ‘experimental ’ 
fields. 

(ii) The r.m.s. fluctuations of the isotropic part are much better predicted. The 
Schumann model peaks too near the wall but is of the right order of magnitude : the 
Moin-Kim model has the right trend with y+ but its magnitude is wrong by three 
orders of magnitude. The correlation between Imod and Iexp is quite reasonable for 
the Schumann model and HH fields, but very poor with the Moin & Kim model. 

(iii) We have calculated the contribution R of the subgrid energy to the pseudo- 
pressure which appears in the LES equations of motion. The contribution R is found 
to be non-negligible compared to the pressure, for small y and/or larger filter width. 

(iv) Leonard’s model represents the Leonard stress very well. The r.m.s. value of 
the model is very close to that of the actual Leonard stress and the correlation 
between the model and the stress is very close to unity. 

(v) The most important positive result of this investigation is that Schumann’s 
synthetic boundary condition (3.39), which has been criticized, is in fact extremely 
good : 7, is closely correlated with u outside the viscous layer. The present experiment 
of Robinson (1982) shows exactly the same effect, and this provides encouraging 
confirmation that the 2.5-dimensional velocity fields are, in this respect a t  least, not 
too far from reality. 

(vi) For the purpose of this paper, there is little difference between the original 
H H  formulation of the 2.5-dimensional field-generation procedure and the later, more 
sophisticated version due to CK. 

If these results are taken at their face value, they imply that the subgrid models 
are in need of substantial improvement. This conclusion must be taken with more 
than a grain of salt, since the results in $5 suggest that the velocity fields generated 
by the existing 2.5-dimensional procedures may not be accurate enough for this rather 
delicate work. These procedures need to be improved, and our investigations (not 
reported above) suggest that the modifications will have to be fairly radical. 

We are grateful to Dr B. A. Splawski of the Department of Nuclear Engineering 
at QMC for substantial help with code preparation and to Professor Hanratty for the 
remark noted a t  the end of $5. Y. Kaneda is indebted to the British SERC for a 
maintenance grant and to the Japanese Ministry of Education for a travel 
scholarship. 

Appendix A. CK boundary conditions 

that of HH, in which besides the obvious boundary condition on the wall 
Chapman & Kuhn (CK) have proposed a model somewhat more complicated than 

u = o  ( y = O )  (A 1) 

(A 2) 

and the periodic side boundary condition 

V(Y, 0, t )  = V(Y, A ,  t ) ,  
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the following boundary conditions are assumed on the outer edge y = yo: 

U 
u+ = - = U,+2alsin(Nlt+)sin~+(2(a2-a~))4 sin(N,,t++$,,), 

u, 

W 
WfE-_=  2pcos ( N , t + ) ~ o s [ + ( 2 ( y ~ - / ? ~ ) ~ s i n  (~Nu,t++$,,), 

u7 
where 

a = 2.0, p = 1.0, y = 1.3, a, = -0.45a, 

A = 100, yi = = 40.0. 
U 

Some points are not fully explicit in their paper and we have found it difficult to 
reproduce their results. These points are as follows. 

(i) The mean $ow part U, in (A 3a). This term is not included in their boundary 
condition. However, if their (12) or (21) (which is equivalent to our (2.1)) is to be used 
as a basic equation, this term should be included. We do so, and put 

U, = 2.6+5.2 lnyi  z 14.7 (A 4) 

(this being the value given by the standard logarithmic formula). 
(ii) The values of N, and Nu2. They put 

2n u, 
TB/A ’ u2 56, u, . 

N =-- n 
N, = - 

They say ‘experimental values of T,/A lie between 100 and 160, with 120 being 
a representative average for RB near lo3’, and accordingly we put 

N1= &, (A 6) 

although the frequency NJ2n = seems to be rather small when compared with 
u/2n = & in (2.5) and (2.7). As for Nu,, they cite Re8 = 29000, S+ = 1200. Hence 
since u,/u, = (8U,/u)/(&u,/u) = Re8/6+, we are led to put 

N u2 = - 8 = - p  56, 27c Re 8+ 2n 5 (1200)2 2OooO (z &). (A 7 )  

However, if we adopt (A 6) and (A 7) ,  the time period of (A 3) would be very long, 
and very long computational times would be required. We therefore assume simply 

N,,=&jn=N 1 1  (A 8) 

recognizing that this may not agree with what CK have done. 
(iii) The values of $,, and $,,. They reported that $w2 has a major effect on the 

mean velocity profile of u, while q5u2 is not a sensitive parameter. Here we note that 
the importance of these parameters depends crucially on the ratio x = &Nu2/Nl. It 
is not difficult to show that, in analysing quantities averaged over one time period, 
we may put without loss of generality 

$ L z  = 4,2--27c(2XK+L), $ 5 2  = $wz--n(XK+M), (A 9) 
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instead of q5,,2, q5w2 respectively in (A 3), where K, L and M are arbitrary integers. 
Unless x is some special number, the distributions of Mod ($L2, 27c) and Mod (q5h2, 2x) 
with K = 0, 1,  & 2, . . . are quite dense on (0,2x), and it would be difficult to find 
numerically a significant dependence of any quantity averaged over one period on 
q5u2 or q5w2. (If x is an irrational number, the flow cannot be periodic in time and q5u2, 
q5wz lose their meaning.) We have been unable to confirm CK's statement that q5,, 
has a major effect on the mean velocity of u and assume here simply 

q5u2 = q5w2 = 0. (A 10) 

CK represented the global pressure gradient associated with the large eddies as 
equivalent to the following body force : 

where F+ = F / ( u , ~ / v ) ,  and ue2 and we2 are the second terms of the right-hand sides 
of (A 3a) and (A 3c) respectively. 

As for the initial velocity field, we put here 

t, = 0 (t = 0). (A 12) 

This is compatible with the treatment of CK, who used an 'arbitrary' initial 
condition. 

Finally, to determine the velocity field uniquely under these boundary conditions, 
the uniform pressure gradient must be specified. We assume that it is zero, 

this being compatible with the assumption of constant stress in the wall layer. 
To smooth the transition from the initial stage to the final periodic state, we 

introduced a damping factor for the boundary condition on y = yo ; i.e. instead of (A 3) 
we used 

where 
w + ( t + )  = r(t+) x (right-hand-side terms of (A 3)) (y = yo'), (A 14) 

= 1  

7c 
T --= 120. 

- Nl 

We find that this improves the convergence to the final periodic state. 

Appendix B. Suspected error in HH time advancement scheme 

procedure; the first iterate to Cn+l,  say gn+lcl , is obtained from c", ~n by solving 
HH solved the vorticity equation (2.4) b r  the AD1 method using an iterative 
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where cn, $n are the values of the nth time step. On the second iteration step (where 
they stopped), they substituted Cn+l(') for 5" in the left-hand-side of (B 1). We think 
that this 5" should be left unchanged during the solution of (B l ) ,  (B 2) which yields 
cn+l. We tested their procedure by comparison with the well-known exact solution 

$(y, z, t )  = exp{ - v(a2 + b2)  t }  sin ( a y )  sin (bz). 

The numerical solution obtained in this way decayed nearly twice as fast as the exact 
one. 
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